Hydrogen migration to acyclic pentadienyl ligands: the reactions of (η^{5}-2,4-dimethylpentadienyl) (η^{4}-2,4-dimethylpenta-1,3-diene)(L)ruthenium(II) tetrafluoroborates ($\mathrm{L}={ }^{\mathrm{t}} \mathrm{BuNC}, \mathrm{CO}, \mathrm{P}(\mathrm{OMe})_{3}$) with dienes

David N. Cox ${ }^{\text {a,b }}$, Tito Lumini ${ }^{\text {a }}$ and Raymond Roulet ${ }^{\text {a }}$
${ }^{a}$ Institut de Chimie Minérale et Anatytique de l'Université, 3 Place du Château, CH-1005, Lausanne (Switzerland)
${ }^{b}$ School of Physics and Materials, Lancaster University, Lancaster, LA1 4YA (UK)

(Received January 21, 1992)

Abstract

Diene-for-diene substitutions occur on reaction of the title complexes $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{11}\right)\left(\eta^{4}\right.\right.$ $\left.\left.\mathrm{C}_{7} \mathrm{H}_{12}\right) \mathrm{L}\right] \mathrm{BF}_{4}\left(\mathrm{~L}={ }^{\mathrm{t}} \mathrm{BuNC}(2), \mathrm{CO}(3), \mathrm{P}(\mathrm{OMe})_{3}(4)\right)$ with an excess of butadiene 2,3-dimethylbutadiene, cyclohexa-1,3-diene or cycloocta-1,5-diene giving complexes of the type $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{11}\right)(\right.$ diene $\left.) \mathrm{L}\right] \mathrm{BF}_{4}$ (5-16). Apparent pentadienyl-for-pentadienyl substitutions occur on reaction of 2 with the cyclopentadienes $\mathrm{C}_{5} \mathrm{H}_{6}$ or $\mathrm{C}_{5} \mathrm{Me}_{5} \mathrm{H}$ giving $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{R}_{5}\right)\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{12}\right)\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}^{2}\right)\right] \mathrm{BF}_{4}(\mathrm{R}=\mathrm{H}$ (17), Me (18)), on reaction of 2 or 3 with cyclohexa-1,4-diene to give $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{6} \mathrm{H}_{7}\right)\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{12}\right) \mathrm{L}^{2}\right] \mathrm{BF}_{4}$ ($\mathrm{L}={ }^{\mathbf{t}} \mathrm{BuNC}$ (19), $\mathrm{CO}(20)$), and on reaction of 2,3 or 4 with cycloocta-1,3-diene to give $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{8} \mathrm{H}_{11}\right)\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{12}\right) \mathrm{L}\right] \mathrm{BF}_{4}$ ($\mathrm{L}={ }^{\mathrm{t}} \mathrm{BuNC}$ (21), $\mathrm{CO}(22), \mathrm{P}(\mathrm{OMe})_{3}$ (23)). The ($\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{12}$) ligand is readily displaced from 19 and 20 by an excess of a cyclohexadiene (1,3- or 1,4-) to give $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{6} \mathrm{H}_{7}\right)\left(\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{8}\right) \mathrm{L}\right] \mathrm{BF}_{4}\left(\mathrm{~L}={ }^{\mathrm{t}} \mathrm{BuNC}\right.$ (24), CO (25)) and from 21 by an excess of cycloocta-1,5-diene giving [Ru($\left.\eta^{5}-\mathrm{C}_{8} \mathrm{H}_{11}\right)\left(\eta^{2}: \eta^{2}-\right.$ $\left.\left.\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{CN}^{t} \mathrm{Bu}\right)\right] \mathrm{BF}_{4}(26)$. All the apparent pentadienyl-for-pentadienyl substitutions are suggested to occur via initial displacement of the ($\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{12}$) ligand from 2-4, with subsequent $\mathrm{C}-\mathrm{H}$ activation and inter-ligand hydrogen migration from the incoming diene to the ($\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{11}$) ligand leading to the observed products.

Introduction

A major reason for the sustained interest in acyclic pentadienyl complexes of the transition metals in recent years has been the realisation that $\eta^{5} \leftrightarrow \eta^{3} \leftrightarrow \eta^{1}$ interconversions are more facile for such complexes than for related cyclopentadienyl complexes [1]. The relevance of this to possible enhanced catalytic activity for acyclic pentadienyl complexes has been emphasized [2].

[^0]We have previously reported the synthesis of the complex $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{11}\right)_{2} \mathrm{H}\right] \mathrm{BF}_{4}$ (1, $\mathrm{C}_{7} \mathrm{H}_{11}=2$,4-dimethylpentadienyl) obtained in a one-pot reaction from the ruthenium(IV) precursor $\left[\mathrm{Ru}\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{Cl}(\mu-\mathrm{Cl})\right]_{2}, \mathrm{AgBF}_{4}$ and 2,4-dimethylpentadiene in ethanol [3]. Complex 1 can also be obtained by direct protonation of the open-ruthenocene $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{11}\right)_{2}\right.$] with HBF_{4} [4]. Complex 1 , which is highly reactive towards two-electron ligand addition, has an agostic ground state, and its dynamic behaviour in solution [5] is substantially different from that of related agostic pentadiene complexes of Cr or Mn [6,7]. It has been demonstrated that the reactivity of 1 can be exploited to provide a convenient synthetic entry into mono(2,4-dimethylpentadienyl)ruthenium(II) chemistry [8-10]. We report here on the reactions of the mono-ligand adducts of $1,\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{11}\right)\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{12}\right) \mathrm{L}\right] \mathrm{BF}_{4}$ ($\mathrm{L}={ }^{\mathrm{t}} \mathrm{BuNC}(2), \mathrm{CO}(3), \mathrm{P}(\mathrm{OMe})_{3}(4)$), with a range of free dienes. Some of these reactions involve novel $\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{11}\right) \rightarrow\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{12}\right)$ transformations, and hence provide a further illustration of the chemical differences between acyclic pentadienyl complexes and their cyclopentadienyl analogues.

Results and discussion

Synthesis of $\left[R u\left(\eta^{5}-C_{7} H_{11}\right)\left(\eta^{4}-C_{7} H_{12}\right) L J B F_{4}\right.$ complexes
Treatment of $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{11}\right)_{2} \mathrm{H}^{2} \mathrm{BF}_{4}\right.$ (1) with ${ }^{\mathrm{t}} \mathrm{BuNC}, \mathrm{CO}$ or $\mathrm{P}(\mathrm{OMe})_{3}$ in dichloromethane at room temperature results in rapid ligand addition and formation of the complexcs 2,3 or 4 , respectively, as shown in eq. 1.
$\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{11}\right)_{2} \mathrm{H}\right] \mathrm{BF}_{4}+\mathrm{L} \longrightarrow\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{11}\right)\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{12}\right) \mathrm{L}\right] \mathrm{BF}_{4}$
($\mathrm{L}={ }^{\mathrm{t}} \mathrm{BuNC}$ (2), CO (3), $\mathrm{P}(\mathrm{OMe})_{3}(4)$)
The reactions probably proceed via an initial rupture of the $\mathrm{Ru}-\mathrm{H}$ component of the three-centre $\mathrm{Ru}-\mathrm{H}-\mathrm{C}$ interaction in 1 to give the sixteen-electron intermediate, $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{11}\right)\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{12}\right)\right]^{+}$, which subsequently coordinates the two-electron ligand. The sixteen-electron intermediate has previously been shown to be involved in fluxional processes of 1 that are rapid in solution at room temperature [5]. The reactions of eq. 1 are quantitative, and isolated yields of 2,3 and 4 exceed 85%. Dichloromethane is an ideal solvent for these reactions; acetone is unsuitable as its higher coordinating abilities have been shown to facilitate further reaction of 2-4 to give the complexes $\left[\mathrm{Ru}\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{7} \mathrm{H}_{11}\right) \mathrm{I}_{3}\right] \mathrm{RF}_{4}[9,10]$.

An alternative synthesis of 2 and 4 , which does not require 1 as a precursor, involves the room temperature reaction of the 2,7-dimethyloctadienediyl complexes $\left.\left[\mathrm{Ru}\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{Cl}_{2} \mathrm{~L}\right]\left(\mathrm{L}={ }^{\mathrm{t}} \mathrm{BuNC}, \mathrm{P}(\mathrm{OMe})\right)_{3}\right)[11]$ directly with $\mathrm{AgBF}_{4}(2$ mol. equiv.) and an excess of 2,4 -dimethylpenta-1,3-diene in ethanol. This is our preferred synthesis for 2 and 4, giving overall yields based on commercial RuCl_{3}. $n \mathrm{H}_{2} \mathrm{O}$ of $\mathrm{ca} .50 \%$, and providing a further illustration of a useful synthetic methodology that we have outlined elsewhere [3]. The structure of complex 3 has previously been reported. The ($\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{11}$) ligand takes up its usual U-conformation, the CO resides under the open-edge of the pentadienyl ligand, and the diene is in the exo-orientation [9]. Similar structures for 2 and 4 are anticipated. The ease of reaction of complexes $2-4$ with dienes in acetone solution follows the sequence $3>2 \approx 4$; hence for the reactions described below, those involving 3

were carried out at room temperature and those involving 2 and 4 were under reflux.

Diene-for-diene substitution reactions

Reaction of the complexes 2,3 or 4 with an excess of the free dienes butadiene, 2,3-dimethylbutadiene, cyclohexa-1,3-diene, or cycloocta-1,5-diene, in acetone solution results in formation of the complexes $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{11}\right)(\right.$ diene $\left.) \mathrm{L}\right] \mathrm{BF}_{4}(\mathrm{~L}=$ ${ }^{t} \mathrm{BuNC}$, diene $=\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{6}$ (5), $\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{10}$ (6), $\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{8}$ (7), $\eta^{2}: \eta^{2}-\mathrm{C}_{8} \mathrm{H}_{12}$ (8); $\mathrm{L}=$ CO, diene $=\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{6}$ (9), $\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{10}$ (10), $\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{8}$ (11), $\eta^{2}: \eta^{2}-\mathrm{C}_{8} \mathrm{H}_{12}$ (12); $\mathrm{L}=$ $\mathrm{P}(\mathrm{OMe})_{3}$, diene $=\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{6}(13), \eta^{4}-\mathrm{C}_{6} \mathrm{H}_{10}(14), \eta^{4}-\mathrm{C}_{6} \mathrm{H}_{8}(15), \eta^{2}: \eta^{2}-\mathrm{C}_{8} \mathrm{H}_{12}$ (16), as shown in Scheme 1. In these reactions the bulky η^{4}-bound 2,4-dimethylpenta-1,3-diene ligand is displaced from complexes 2-4 by the incoming diene to give complexes $5-16$ in isolated yields of $60-90 \%$. We have previously described the crystal structure of complex 11 [8]. The cation of 11 has an approximate, non-crystallographic, C_{s} symmetry with the ($\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{11}$) ligand in a U-conformation, the carbonyl resides in the site directly under the open-edge of the pentadienyl ligand, and the diene is in the exo-orientation. On the basis of their solution ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra all the cations in $5-16$ possess an element of symmetry, and we propose the C_{s} symmetry structures, similar to that of 11, shown in Scheme 1.

Related cationic complexes of the type [$\mathrm{M}\left(\eta^{5}\right.$-dienyl) $\left(\eta^{4}\right.$-diene $\left.) \mathrm{CO}\right] \mathrm{BF}_{4}$ are known for $\mathrm{M}=\mathrm{Fe}$ [12] and Ru [13], as are the neutral complexes $\left[\mathrm{Ru}\left(\boldsymbol{\eta}^{5}-\right.\right.$ dienyl) $\left(\eta^{4}\right.$-diene $) \mathbf{X]}\left(\mathbf{X}=\right.$ halide, $\left(\eta^{5}\right.$-dienyi) $=$ cyclopentadienyl [14], pentamethylcyclopentadienyl [15], 2,4-dimethylpentadienyl [10]). Diene-for-diene substitution reactions, also, have previously been observed for both ruthenium(II) [14] and ruthenium(0) [16], although they have generally involved displacement of cy-cloocta-1,5-diene.

Scheme 2.

Apparent pentadienyl-for-pentadienyl substitution reactions
The reactions of 2 with a small excess (1.5 mol. equiv.) of either freshly distilled cyclopentadiene ($\mathrm{C}_{5} \mathrm{H}_{6}$) or 1,2,3,4,5-pentamethylcyclopentadiene ($\mathrm{C}_{5} \mathrm{Me}_{5} \mathrm{H}$) in acetone solution give the complexes $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{12}\right)\left(\mathrm{CN}^{4} \mathrm{Bu}\right)\right] \mathrm{BF}_{4}(17)$ and $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{12}\right)\left(\mathrm{CN}^{4} \mathrm{Bu}\right)\right] \mathrm{BF}_{4}(18)$ in yields of 75 and 80%, respectively. Hence in both reactions an apparent substitution of an acyclic pentadienyl ligand for a cyclic pentadienyl ligand has occurred. We suggest that these reactions proceed via an initial diene-for-diene substitution followed by an inter-ligand hydrogen transfer, as shown in Scheme 2. Although the proposed intermediates $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{11}\right)\left(\eta^{4}-\mathrm{C}_{5} \mathrm{R}_{5} \mathrm{H}\right)\left(\mathrm{CN}^{1} \mathrm{Bu}^{2}\right)\right] \mathrm{BF}_{4}$ in this scheme were not observed, we have previously reported the isolation of the related complex $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{4}-\right.\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{6}\right)\left(\mathrm{CN}^{t} \mathrm{Bu}^{2}\right) \mathrm{BF}_{4}$ containing an η^{4}-cyclopentadiene ligand [3].

Additional examples of apparent pentadienyl-for-pentadienyl substitutions are observed on reaction of complexes 2 or 3 with cyclohexa-1,4-diene. Hence treatment of 2 or 3 with a small excess of cyclohexa-1,4-diene ($1-2 \mathrm{~mol}$. equiv.) in acetone solution gives the η_{-}^{5}-cyclohexadienyl complexes $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{6} \mathrm{H}_{7}\right)\left(\eta^{4}\right.\right.$ $\left.\left.\mathrm{C}_{7} \mathrm{H}_{12}\right) \mathrm{L}\right] \mathrm{BF}_{4}\left(\mathrm{~L}={ }^{\mathrm{t}} \mathrm{BuNC}\right.$ (19), CO (20)) in isolated yields of $c a .80 \%$ (Scheme 3). In contrast to the reactions involving 2 and 3 , however, 4 reacts with a small excess of cyclohexa-1,4-diene (2 mol. equiv.) in acetone to give only $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{11}\right)\left(\eta^{4}\right.\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{8}\right)\left(\mathrm{P}(\mathrm{OMe})_{3}\right) \mathrm{BF}_{4}(15)$, isolated in 53% yield. Furthermore, analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum of the entire crude product from the reaction of 4 and cyclohexa-1,4-diene showed no trace of an η^{5}-cyclohexadienyl complex analogous to 19 or 20. We suggest that the reactions of 2-4 with cyclohexa-1,4-diene probably all follow a common initial pathway involving displacement of the η^{4}-bound 2,4-dimethylpentadiene ligand from 2-4 and initial η^{2}-coordination of cyclohexa-1,4-diene. Subsequent oxidative-addition of an allylic $\mathrm{C}-\mathrm{H}$ bond [17] of the η^{2}-cyclohexa-1,4-diene ligand is then suggested to produce intermediates of the form $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{11}\right)\left(\eta^{3}-\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{7}\right) \mathrm{LH}\right] \mathrm{BF}_{4}\left(\mathbf{A} ; \mathrm{L}={ }^{\mathrm{t}} \mathrm{BuNC}\right.$, CO or $\left.\mathrm{P}(\mathrm{OMe})_{3}\right)$. From intermediates A to final products, the least motion pathways consistent with our observations are: For $\mathrm{L}={ }^{\prime} \mathrm{BuNC}$ or CO , the final products $\mathbf{1 9}$ or 20 , respectively, are formed by selective migration of the hydride ligand exclusively to either $\mathrm{C}(1)$ or $\mathrm{C}(5)$ of the 2,4 -dimethylpentadienyl ligand. For $\mathrm{L}=\mathrm{P}\left(\mathrm{OMe}_{3}\right.$, the final product 15 is formed by selective migration of the hydride ligand exclusively to either $\mathrm{C}(1)$ or $\mathrm{C}(5)$ of the cyclohexadienyl ligand.

The factors controlling the selectivities of the hydride migrations in the intermediates \mathbf{A} are not understood, and further speculation is unwarranted given that

Scheme 3.
additional intermediates may be involved in the conversion of \mathbf{A} into final products. For example, an $\eta^{5} \leftrightarrow \eta^{3}$ interchange of the hapticities of the two dienyl ligands of \mathbf{A} may occur, or the terminal hydride forms may be converted into related agostic intermediates.

(A)

The reactions of complexes 2,3 and 4 with a small excess of cycloocta-1,3-diene ($1-2 \mathrm{~mol}$. equiv.) in acetone solution all provide further examples of apparent pentadienyl-for-pentadienyl substitution reactions, giving the complexes $\left[\mathrm{Ru}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{8} \mathrm{H}_{11}\right)\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{12}\right) \mathrm{L}\right] \mathrm{BF}_{4}\left(\mathrm{~L}={ }^{\mathrm{t}} \mathrm{BuNC}\right.$ (21), CO (22), $\mathrm{P}(\mathrm{OMe})_{3}$ (23)) in isolated yields of $c a .70 \%$ (Scheme 3). A notable feature common to the solution ${ }^{1} \mathrm{H}$ NMR spectra of complexes 21-23 is the presence of a high-field resonance (ca. 0.0-0.5 ppm) appearing as a quartet of triplets. This signal, which has been recognised previously as a characteristic feature of an η^{5}-cyclooctadienyl ligand [18], is assigned to the endo-hydrogen on $C(7)\left({ }^{2} J(H H) \approx 14,{ }^{3} J(H H) \approx 14,14,3\right.$ and 3 Hz). We suggest that these reactions, which are clearly related to those involving cyclohexa-1,4-diene, all occur through intermediates of the type $\left[\mathrm{Ru}\left(\eta^{5}\right.\right.$ $\left.\left.\mathrm{C}_{7} \mathrm{H}_{11}\right)\left(\eta^{3}-\mathrm{C}_{8} \mathrm{H}_{11}\right) \mathrm{LH}\right] \mathrm{BF}_{4}\left(\mathrm{~B} ; \mathrm{L}={ }^{\mathrm{t}} \mathrm{BuNC}, \mathrm{CO}\right.$ or $\left.\mathrm{P}(\mathrm{OMe})_{3}\right)$, formed from 2-4 by displacement of the η^{4}-2,4-dimethylpentadiene ligand, η^{2}-coordination of cy-cloocta-1,3-diene, and oxidative-addition of an allylic $\mathrm{C}-\mathrm{H}$ bond. The observed final products, 21-23, imply that all the intermediates B effectively undergo selective migration of the hydride ligand exclusively to either $C(1)$ or $C(5)$ of the 2,4-dimethylpentadienyl ligand.

The reactions of complexes $2-4$ with dienes have provided selective syntheses of five pairs of isomeric complexes: $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{11}\right)\left(\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{8}\right) \mathrm{L}\right] \mathrm{BF}_{4}$ and $\left[\mathrm{Ru}\left(\eta^{5}-\right.\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{7}\right)\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{12}\right) \mathrm{L}^{2} \mathrm{BF}_{4}\left(\mathrm{~L}={ }^{\dagger} \mathrm{BuNC}, 7\right.$ and 19; $\mathrm{L}=\mathrm{CO}, 11$ and 20, respectively); $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{11}\right)\left(\eta^{2}: \eta^{2}-\mathrm{C}_{8} \mathrm{H}_{12}\right) \mathrm{L}\right] \mathrm{BF}_{4}$ and $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{8} \mathrm{H}_{11}\right)\left(\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{12}\right) \mathrm{L}\right] \mathrm{BF}_{4} \quad(\mathrm{~L}=$ ${ }^{\mathrm{t}} \mathrm{BuNC}, 8$ and 21; $\mathrm{L}=\mathrm{CO}, 12$ and 22; $\mathrm{L}=\mathrm{P}(\mathrm{OMe})_{3}, 16$ and 23, respectively). Even with prolonged reactions in acetone solution, none of these complexes undergoes any rearrangement into its isomeric partner. There is clearly a substantial kinetic barrier preventing their interconversion, and the relative thermodynamic stabilities within the isomeric pairs remain unknown.

For the η^{5}-cyclodienyl complexes 17-23, selected reactions with dienes were investigated, and the results confirm that the η^{4}-coordinated 2,4-dimethylpentadiene ligand in these complexes is substitutionally labile. Hence reaction of complexes 19 or 20 with excess of either cyclohexa-1,3-diene or cyclohexa-1,4-diene gives the complexes $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{6} \mathrm{H}_{7}\right)\left(\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{8}\right) \mathrm{L}\right] \mathrm{BF}_{4}\left(\mathrm{~L}={ }^{\mathrm{t}} \mathrm{BuNC}\right.$ (24), CO (25)), containing an η^{4}-bound cyclohexa-1,3-diene ligand. Similarly, reaction of 21 with excess cycloocta-1,5-diene gives $\left[\mathrm{Ru}\left(\eta^{5}-\mathrm{C}_{8} \mathrm{H}_{11}\right)\left(\eta^{2}: \eta^{2}-\mathrm{C}_{8} \mathrm{H}_{12}\right)\left(\mathrm{CN}^{\mathrm{t}} \mathrm{Bu}^{2}\right)\right] \mathrm{BF}_{4}$ (26), although 21 does not react with excess cycloocta-1,3-diene in acetone solution. Of these complexes, only $\mathbf{2 5}$ has been reported previously [13b]; its synthesis from $\mathbf{2 0}$, however, is the first not requiring a precursor accessible only through metal vapour techniques.

Experimental

General comments

All reactions were carried out under nitrogen in dried and deoxygenated solvents by standard Schlenk techniques. IR spectra (cm^{-1}) were recorded on a Perkin-Elmer 883 spectrophotometer, in CHCl_{3} solution unless otherwise stated. Microanalyses were carried out by Ilse Beetz, Kronach, Germany. NMR spectra were recorded at room temperature in CDCl_{3} solution, unless otherwise stated, on Bruker WH-360 (${ }^{1} \mathrm{H}, 360 ;{ }^{13} \mathrm{C}, 90.55 \mathrm{MHz}$) or $\mathrm{AC}-200\left({ }^{1} \mathrm{H}, 200 ;{ }^{13} \mathrm{C}, 50.32 \mathrm{MHz}\right.$) FT spectrometers. Chemical shifts are reported in δ ppm downfield from SiMe_{4}.

Spin-spin coupling constants, J, are given in Hz . The hydrogen atom labelling scheme used in the ${ }^{1} \mathrm{H}$ NMR assignments features a prime (') to indicate a proton of the η^{4}-bound diene ligand. The absence of a prime indicates a proton of the η^{5}-bound dienyl ligand. The specific carbon atom to which the proton is attached is indicated using the IUPAC approved numbering scheme for the carbon skeleton of each ligand.

Synthesis of complexes

Syntheses and characterisation data for 1,3 and 11 have been described previously $[3,8,10]$.
(t-Butylisocyanide) $\boldsymbol{\eta}^{4}$-2,4-dimethylpenta-1,3-diene) (η^{5}-2,4-dimethylpentadienyl) ruthenium tetrafluoroborate (2). To a solution of $1(0.27 \mathrm{~g}, 0.71 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 ml) was added ' $\mathrm{BuNC}(0.10 \mathrm{ml}, 0.88 \mathrm{mmol}$) and the mixture was stirred for 2 h at room temperature. Filtration, partial evaporation of the solution, addition of $\mathrm{Et}_{2} \mathrm{O}$ and cooling (250 K) gave pale yellow crystals of 2 , which were washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo ($0.29 \mathrm{~g}, 88 \%$). M.p. $155^{\circ} \mathrm{C}$ (dec.). IR: $2172 \mathrm{~cm}^{-1}(\mathrm{CN}) .{ }^{1} \mathrm{H}$ NMR: 5.80 (s, 1H, H3); 4.94 (s, 1H, H3'); $3.48,2.86$ (each d, ${ }^{2} J=3.0,3.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H} 1 E, \mathrm{H} 5 E$); 2.23 (d, ${ }^{2} J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1^{\prime} E$); 2.21, 2.15 (each $\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{Me}$); 1.89 (s, $4 \mathrm{H}, \mathrm{Me}^{\prime}$ and $\mathrm{H}^{\prime} \mathrm{Z}$); 1.69 (s, $9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$); 1.51, 1.18 (each s, $6 \mathrm{H}, 2 \mathrm{Me}^{\prime}$); 1.35, 1.21 (each d, 2H, H1Z, H5Z). ${ }^{13} \mathrm{C}$ NMR: 150.1 (s, RuCN); 113.3, 113.1, 106.8 (3s); 99.5 (d, $J=162 \mathrm{~Hz}$); 91.0 (d, $J=164 \mathrm{~Hz}$); 89.2 (s$) ; 59.7$ ($\mathrm{s}, \mathrm{RuCNC}$); 58.2 (t, $J=160$ Hz); 53.4 (t, $J=162 \mathrm{~Hz}$); 48.1 (t, $J=159 \mathrm{~Hz}$); 30.8 (q, $J=127 \mathrm{~Hz},{ }^{\mathrm{t}} \mathrm{Bu}$); 28.7, 25.4, 24.6, 23.0, 22.1 ($5 \mathrm{q}, J=123-128 \mathrm{~Hz}$). Anal. Found: C, $49.64 ; \mathrm{H}, 6.98 ; \mathrm{N}, 3.27$. $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{BF}_{4} \mathrm{NRu}$ calc.: $\mathrm{C}, 49.36 ; \mathrm{H}, 6.98 ; \mathrm{N}, 3.03 \%$.
(η^{4}-2,4-Dimethylpenta-1,3-diene) (η^{5}-2,4-dimethylpentadienyl)(trimethylphosphite) ruthenium tetrafluoroborate (4). This was made as described for 2 but with $\mathrm{P}(\mathrm{OMe})_{3}$ in place of ${ }^{\mathrm{t}} \mathrm{BuNC} .1(0.25 \mathrm{~g}, 0.66 \mathrm{mmol})$ and $\mathrm{P}(\mathrm{OMe})_{3}(0.47 \mathrm{ml}, 4.0$ mmol) gave yellow crystals of $4\left(0.33 \mathrm{~g}, 99 \%\right.$). M.p. $113^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR: 5.95 (s, $1 \mathrm{H}, \mathrm{H} 3$); 4.86 (s, 1H, H3'); 4.02 (d, $J(\mathrm{PH})=11.2 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{OMe}$); 3.59, 2.89 (each d, ${ }^{2} J=3.9,3.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 E, \mathrm{H} 5 E$); $2.33\left(\mathrm{~d},{ }^{2} J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1^{\prime} E\right) ; 2.20,2.17$ (each $\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{Me}$); 1.85 (s, $3 \mathrm{H}, \mathrm{Me}^{\prime}$); 1.70 (dd, $J(\mathrm{PH})=14.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1^{\prime} \mathrm{Z}$); 1.37 (s, 3H, Me^{\prime}); $0.97\left(\mathrm{~d}, J(\mathrm{PH})=3.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{\prime}\right) ; 0.83,0.69$ (each dd, $J(\mathrm{PH})=7.7,6.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H} 1 Z, \mathrm{H} 5 Z$). ${ }^{13} \mathrm{C}$ NMR: 112.0, 111.1, 107.5 (3s); 100.9 (dd, $J=158, J(\mathrm{PC})=10.3$ Hz); 89.6 (d, $J=164 \mathrm{~Hz}$); 86.3 (s); 57.4 (t, $J=158 \mathrm{~Hz}$); $55.3(\mathrm{q}, J=147 \mathrm{~Hz}, \mathrm{OMe}$); $54.5(\mathrm{t}, J=147 \mathrm{~Hz}) ; 47.7(\mathrm{t}, J=165 \mathrm{~Hz}$); 27.8, 25.5, 24.4, 21.9, 21.6 ($5 \mathrm{q}, J=126-129$ Hz). Anal. Found: $\mathrm{C}, 40.45 ; \mathrm{H}, 6.39$; $\mathrm{P}, 5.87 . \mathrm{C}_{17} \mathrm{H}_{32} \mathrm{BF}_{4} \mathrm{O}_{3} \mathrm{PRu}$ calc.: $\mathrm{C}, 40.57$; H , 6.41 ; P, 6.15\%.

Alternative syntheses of 2 and 4. The complex [$\left.\mathrm{Ru}\left(\eta^{3}: \eta^{3}-\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{Cl}_{2}\left(\mathrm{CN}^{t} \mathrm{Bu}\right)\right]$ ($0.34 \mathrm{~g}, 0.87 \mathrm{mmol}$) [11] was added to a solution of $\mathrm{AgBF}_{4}(0.38 \mathrm{~g}, 1.95 \mathrm{mmol})$ and 2,4-dimethylpenta-1,3-diene ($3.0 \mathrm{ml}, 23 \mathrm{mmol}$) in ethanol (30 ml) and the mixture was stirred at room temperature for $3 \mathrm{~h} . \mathrm{AgCl}$ was then removed by filtration through a bed of Celite (1 cm). Partial evaporation of the solution and cooling (250 K) gave yellow crystals of $2(0.30 \mathrm{~g}, 75 \%)$, Similarly, $\left[\mathrm{Ru}\left(\eta^{3}: \eta^{3}\right.\right.$ $\left.\left.\left.\mathrm{C}_{10} \mathrm{H}_{16}\right) \mathrm{Cl}_{2}\left(\mathrm{P}(\mathrm{OMe})_{3}\right)\right](0.42 \mathrm{~g}, 0.97 \mathrm{mmol})\right][11], \mathrm{AgBF}_{4}(0.40 \mathrm{~g}, 2.05 \mathrm{mmol})$ and 2,4-dimethylpenta-1,3-diene ($3.0 \mathrm{ml}, 23 \mathrm{mmol}$) in ethanol (30 ml) gave yellow crystals of $4(0.42 \mathrm{~g}, 86 \%)$.
(η^{4}-Butadiene) (t-butylisocyanide) $\boldsymbol{\eta}^{5}$-2,4-dimethylpentadienyl)ruthenium tetrafluoroborate (5). Butadiene was bubbled through a solution of $2(0.19 \mathrm{~g}, 0.41 \mathrm{mmol})$
in acetone (40 ml) at reflux for 1 h . Filtration, partial solvent evaporation, addition of $\mathrm{Et}_{2} \mathrm{O}$ and cooling (250 K) gave colourless crystals of 5 . Washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo ($0.12 \mathrm{~g}, 71 \%$). M.p. $186^{\circ} \mathrm{C}$ (dec.). IR: $2181 \mathrm{~cm}^{-1}$ (CN). ${ }^{1} \mathrm{H}$ NMR: 6.28 (s, 1H, H3); 5.45 (m, ${ }^{3} J=13.0,5.0,{ }^{4} J=4.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2^{\prime}, \mathrm{H} 3^{\prime}$); 3.46 (d, ${ }^{2} J=2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 E, \mathrm{H} 5 E$); 2.49 (dd, $2 \mathrm{H}, \mathrm{H} 1^{\prime} E, \mathrm{H}^{\prime} E$); 1.90 (s, 6H, 2Me); 1.68 (s, 9H, 'Bu); 1.26 (d, 2H, H1Z, H5Z); 1.07 (dd, 2H, H1'Z, H4'Z). ${ }^{13}$ C NMR: 144.7 (s, RuCN); 110.8 (s); 99.1 (d, $J=167 \mathrm{~Hz}$); 91.4 (d, $J=171 \mathrm{~Hz}$); 59.7 (s, RuCNC); $56.6,46.9(2 \mathrm{t}, J=161 \mathrm{~Hz}) ; 30.5\left(\mathrm{q}, J=129 \mathrm{~Hz},{ }^{\mathrm{t}} \mathrm{Bu}\right) ; 23.5(\mathrm{q}, J=128 \mathrm{~Hz}$). Anal. Found: C, 45.71; H, 6.39; N, 3.40. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{BF}_{4} \mathrm{NRu}$ calc.: C, $45.73 ; \mathrm{H}, 6.24$; N, 3.33\%.
(t-Butylisocyanide) $\left(\eta^{4}\right.$-2,3-dimethylbutadiene) $\left(\eta^{5}\right.$-2,4-dimethylpentadienyl)ruthenium tetrafluoroborate (6). 2,3-Dimethylbutadiene ($5.0 \mathrm{ml}, 44 \mathrm{mmol}$) was added to a solution of $2(0.23 \mathrm{~g}, 0.50 \mathrm{mmol}$) in acetone (30 ml) and the mixture was refluxed for 4 h . Work-up as for 5 gave colourless crystals of $6(0.16 \mathrm{~g}, 71 \%)$. M.p. $205^{\circ} \mathrm{C}$ (dec.). IR: $2186 \mathrm{~cm}^{-1}$ (CN). ${ }^{1} \mathrm{H}$ NMR: 5.77 (s, $1 \mathrm{H}, \mathrm{H} 3$); $3.52\left(\mathrm{~d},{ }^{2} \mathrm{~J}=2.5 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{H} 1 E, \mathrm{H} 5 E$); 2.60 (d, ${ }^{2} \mathrm{~J}=1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1^{\prime} E, \mathrm{H}^{\prime} E$); 2.09, 1.92 (each s, 12H, 2 Me and $2 \mathrm{Me}^{\prime}$); 1.67 (s, $9 \mathrm{H},{ }^{'} \mathrm{Bu}$); 1.29 (d, $2 \mathrm{H}, \mathrm{H} 1 Z, \mathrm{H} 5 \mathrm{Z}$); 0.93 (d, $2 \mathrm{H}, \mathrm{H}^{\prime} \mathrm{Z}$, H4'Z). ${ }^{13}$ C NMR: 145.7 (s, RuCN); 111.7, 103.0 (2 s); 101.2 (d, $J=164 \mathrm{~Hz}$); 59.7 (s, $\mathrm{RuCN} C$); 55.2, 48.7 ($2 \mathrm{t}, J=161 \mathrm{~Hz}$); 30.4 (q, $J=129 \mathrm{~Hz},{ }^{\mathrm{t}} \mathrm{Bu}$); 22.8, 20.0 (2q, $J=127 \mathrm{~Hz}$). Anal. Found: C, 48.04; H, 7.02; N, 3.28. $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{BF}_{4} \mathrm{NRu}$ calc.: C, 48.22; H, 6.74; N, 3.12\%.
(t-Butylisocyanide) (η^{4}-cyclohexa-1,3-diene) (η^{5}-2,4-dimethylpentadienyl)ruthenium tetrafluoroborate (7). This was made by the method described as for 6, from cyclohexa-1,3-diene ($0.62 \mathrm{ml}, 6.5 \mathrm{mmol}$) and $2(0.15 \mathrm{~g}, 0.32 \mathrm{mmol}$). Reaction in refluxing acetone (30 ml) for 6 h gave pale yeliow crystais of $7(0.090 \mathrm{~g}, 62 \%$). M.p. $159^{\circ} \mathrm{C}$ (dec.). IR: $2176 \mathrm{~cm}^{-1}$ (CN). ${ }^{1} \mathrm{H}$ NMR: 6.13 (s, $1 \mathrm{H}, \mathrm{H} 3$); 5.33 (dd, ${ }^{3} \mathrm{~J}=5.2$, $\left.{ }^{4} \mathrm{~J}=2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2^{\prime}, \mathrm{H} 3^{\prime}\right) ; 3.55\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 1^{\prime}, \mathrm{H} 4^{\prime}\right) ; 3.52\left(\mathrm{~d},{ }^{2} \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 E\right.$, H5E); 1.96 (s, 6H, 2Me); 1.76 (d, ${ }^{2} J=9.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\prime} \mathrm{a}, \mathrm{H}^{\prime} \mathrm{a}$); 1.69 (s, $9 \mathrm{H}, \mathrm{Bu}$); 1.54 (d, 2H, H5's, H6's); 1.13 (d, 2H, H1Z, H5Z). ${ }^{13} \mathrm{C}$ NMR: 147.4 (s, RuCN); $111.0(\mathrm{~s}) ; 98.6(\mathrm{~d}, J=161 \mathrm{~Hz}) ; 89.5(\mathrm{~d}, J=174 \mathrm{~Hz}) ; 66.9(\mathrm{~d}, J=161 \mathrm{~Hz}) ; 59.7(\mathrm{~s}$, $\mathrm{RuCN} C) ; 57.7(\mathrm{t}, J=159 \mathrm{~Hz}) ; 30.5\left(\mathrm{q}, J=135 \mathrm{~Hz},{ }^{\mathrm{t}} \mathrm{Bu}\right) ; 24.4(\mathrm{q}, J=128 \mathrm{~Hz}) ; 22.9$ ($\mathrm{t}, \mathrm{J}=130 \mathrm{~Hz}$). Anal. Found: C, 48.32; H, 6.39; N, 3.14. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{BF}_{4} \mathrm{NRu}$ calc.: C, 48.44; H, 6.32; N, 3.14\%.
(t-Butylisocyanide) $\left(\eta^{2}: \eta^{2}\right.$-cycloocta-1,5-diene) $\left(\eta^{5}\right.$-2,4-dimethylpentadienyl)ruthenium tetrafluoroborate (8). This was made as described for 6 , but from cycloocta-1,5-diene ($0.67 \mathrm{ml}, 5.5 \mathrm{mmol}$) and $2(0.13 \mathrm{~g}, 0.27 \mathrm{mmol})$. Reaction in refluxing acetone (30 ml) for 8 h gave pale yellow crystals of $8(0.12 \mathrm{~g}, 88 \%)$. M.p. $174^{\circ} \mathrm{C}$ (dec.). IR: $2169 \mathrm{~cm}^{-1}$ (CN). ${ }^{1} \mathrm{H}$ NMR: 6.47 (s, 1H, H3); 3.71, 3.69 ($2 \mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{CH}^{\prime}$); 2.56, $2.35\left(2 \mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}^{\prime}\right) ; 2.45\left(\mathrm{~d},{ }^{2} \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 E, \mathrm{H} 5 E\right.$); $2.17\left(\mathrm{~d},{ }^{2} J=9.3\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}^{\prime}$); $2.04\left(\mathrm{~s}, 8 \mathrm{H}, 2 \mathrm{Me}\right.$ and CH_{2}^{\prime}); 1.72 (s, $9 \mathrm{H},{ }^{\text {' } \mathrm{Bu} \text {); }} 1.03$ (d, $2 \mathrm{H}, \mathrm{H} 1 Z$, H5Z). ${ }^{13} \mathrm{C}$ NMR: 150.2 (s, RuCN); 119.8 (s); 94.3 (d, $J=167 \mathrm{~Hz}$); 92.9 (d, $J=159$ Hz); 84.3 (d, $J=160 \mathrm{~Hz}$); 59.8 (s, RuCNC); 54.1 (t, $J=160 \mathrm{~Hz}$); 31.7 (t, $J=127$ Hz); 30.7 (q, $J=135 \mathrm{~Hz},{ }^{\mathrm{t}} \mathrm{Bu}$); $29.7(\mathrm{t}, J=130 \mathrm{~Hz}$); $24.6(\mathrm{q}, J=133 \mathrm{~Hz}$). Anal. Found: C, $50.89 ; \mathrm{H}, 6.77$; $\mathrm{N}, 3.12 . \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{BF}_{4} \mathrm{NRu}$ calc.: $\mathrm{C}, 50.64 ; \mathrm{H}, 6.80 ; \mathrm{N}$, 2.95\%.
(η^{4}-Butadiene) (carbonyl) (η^{5}-2,4-dimethylpentadienyl)ruthenium tetrafluoroborate (9). Butadiene was bubbled through a solution of $3(0.17 \mathrm{~g}, 0.42 \mathrm{mmol})$ in acetone (30 ml) at room temperature for 1 h . Work-up as for 5 gave colourless crystals of 9
($0.13 \mathrm{~g}, 85 \%$). M.p. $164^{\circ} \mathrm{C}$ (dec.). IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution): $2064 \mathrm{~cm}^{-1}$ (CO). ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $6.77\left(\mathrm{t},{ }^{4} J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3\right) ; 5.81\left(\mathrm{~m},{ }^{3} \mathrm{~J}=13.0,6.0,{ }^{4} \mathrm{~J}=5.0,2.0 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{H}^{\prime}, \mathrm{H}^{\prime}$); 3.87 (dd, $\left.{ }^{2} \mathrm{~J}=2.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 E, \mathrm{H} 5 E\right) ; 2.99\left(\mathrm{~m},{ }^{2} J=2.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{H} 1^{\prime} E, \mathrm{H} 4^{\prime} E$) ; 2.05 (s, $6 \mathrm{H}, 2 \mathrm{Me}$); 2.01 (m, $2 \mathrm{H}, \mathrm{H}^{\prime} \mathrm{Z}, \mathrm{H} 4^{\prime} \mathrm{Z}$); 1.92 (d, $2 \mathrm{H}, \mathrm{H} 1 \mathrm{Z}$, H5Z). ${ }^{13} \mathrm{C}$ NMR (acetone- d_{6}): 205.7 (s, CO); 114.6 (s); 101.8 (d, J=170 Hz); 93.5 (d, $J=176 \mathrm{~Hz}$); $57.2,49.5(2 \mathrm{t}, J=164 \mathrm{~Hz}) ; 23.4(\mathrm{q}, J=130 \mathrm{~Hz})$. Anal. Found: C, 39.50; H, 4.74. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BF}_{4} \mathrm{ORu}$ calc.: $\mathrm{C}, 39.47$; $\mathrm{H}, 4.69 \%$.

Carbonyl(η^{4}-2,3-dimethylbutadiene) (η^{5}-2,4-dimethylpentadienyl)ruthenium
tetrafluoroborate (10). 2,3-Dimethylbutadiene ($3.0 \mathrm{ml}, 26 \mathrm{mmol}$) was added to a solution of 3 ($0.11 \mathrm{~g}, 0.27 \mathrm{mmol}$) in acetone (20 ml) and the mixture was stirred at room temperature for 3 h . Work-up as for 5 gave colourless crystals of $\mathbf{1 0}(\mathbf{0 . 0 8 0} \mathrm{g}$, 75%). M.p. $187^{\circ} \mathrm{C}$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solution): $2064 \mathrm{~cm}^{-1}(\mathrm{CO}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $6.18\left(\mathrm{t},{ }^{4} J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3\right) ; 3.73$ (dd, ${ }^{2} J=3.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 E, \mathrm{H} 5 E$); 2.81 (d, $\left.{ }^{2} J=2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\prime} E, \mathrm{H}^{\prime} E\right) ; 2.21,2.01\left(2 \mathrm{~s}, 12 \mathrm{H}, 2 \mathrm{Me}\right.$ and $\left.2 \mathrm{Me}^{\prime}\right) ; 1.54(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{H} 1 Z, \mathrm{H} 5 \mathrm{Z}$); 1.43 (d, 2H, H1'Z, $\mathrm{H}^{\prime} Z$). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$): 204.0 (s, CO); 115.3, 106.2 (2 s); 103.5 (d, $J=171 \mathrm{~Hz}$); 55.6, $49.2(2 \mathrm{t}, J=160 \mathrm{~Hz}$); 22.3, 19.6 ($2 \mathrm{q}, J=128$ Hz). Anal. Found: C, 42.85; H, 5.85. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{BF}_{4} \mathrm{ORu}$ calc.: C, 42.77 ; H, 5.38%.

Carbonyl $\left(\eta^{2}: \eta^{2}\right.$-cycloocta-1,5-diene) (η^{5}-2,4-dimethylpentadienyl)ruthenium tetrafluoroborate (12). This was made as described for 10, but from cycloocta-$1,5-$ diene ($1.1 \mathrm{ml}, 8.9 \mathrm{mmol}$) and $3(0.18 \mathrm{~g}, 0.44 \mathrm{mmol})$. Reaction in acetone (20 ml) for 8 h at room temperature gave pale yellow crystals of 12 ($0.13 \mathrm{~g}, 70 \%$). M.p. $164^{\circ} \mathrm{C}$ (dec.). IR: $2031 \mathrm{~cm}^{-1}(\mathrm{CO}) .{ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $7.13\left(\mathrm{t},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H3); 4.43, 4.17 ($2 \mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{CH}^{\prime}$); 2.90 (dd, ${ }^{2} \mathrm{~J}=3.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 E, \mathrm{H} 5 E$); 2.80, 2.55 ($2 \mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}^{\prime}$); 2.42, 2.29 ($2 \mathrm{~d},{ }^{2} \mathrm{~J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}^{\prime}$); 2.25 (s, 6H, 2Me); 1.67 (d, $2 \mathrm{H}, \mathrm{H} 1 \mathrm{Z}, \mathrm{H} 5 \mathrm{Z}$). ${ }^{13} \mathrm{C}$ NMR (acetone- d_{6}): 209.7 (s, CO); 123.8 (s); 98.1 (d, $J=161$ $\mathrm{Hz}, 3 \mathrm{C}$); 89.8 (d, $J=160 \mathrm{~Hz}, 2 \mathrm{C}$); 53.5 (t, $J=162 \mathrm{~Hz}$); 31.5, 30.0 ($2 \mathrm{t}, J=127 \mathrm{~Hz}$); 24.4 (q, J=129 Hz). Anal. Found: C, 45.99; H, 5.53. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BF}_{4} \mathrm{ORu}$ calc.: C, 45.84; H, 5.53\%.
(η^{4}-Butadiene) (η^{5}-2,4-dimethylpentadienyl)(trimethylphosphite)ruthenium tetrafluoroborate (13). Butadiene was bubbled through a solution of 4 (0.18 g , 0.36 mmol) in acetone (30 ml) at reflux for 1 h . Work-up as for 5 gave colourless crystals of $13(0.13 \mathrm{~g}, 79 \%)$. M.p. $182^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR: $6.39(\mathrm{~d}, J(\mathrm{PH})=2.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H} 3$); 5.39 (m, $\left.{ }^{3} \mathrm{~J}=9.0,6.0,{ }^{4} J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2^{\prime}, \mathrm{H} 3^{\prime}\right) ; 3.95(\mathrm{~d}, \mathrm{~J}(\mathrm{PH})=11.5$ $\mathrm{Hz}, 9 \mathrm{H}, \mathrm{OMe}$); 3.47 (d, ${ }^{2} J=3.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 E, \mathrm{H} 5 E$); $2.40\left(\mathrm{~m},{ }^{2} J=2.0 \mathrm{~Hz}, \mathrm{H} 1^{\prime} E\right.$, $\mathrm{H} 4^{\prime} E$); 1.93 (s, 6H, 2Me); 0.90 (dd, J(PH) $=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 \mathrm{Z}, \mathrm{H} 5 \mathrm{Z}$); 0.85 (ddd, $2 \mathrm{H}, \mathrm{H} 1^{\prime} \mathrm{Z}, \mathrm{H} 4^{\prime} \mathrm{Z}$). ${ }^{13} \mathrm{C}$ NMR: 110.1 (s); 100.7, 91.1 ($2 \mathrm{~d}, J=168 \mathrm{~Hz}$); 57.4, 45.7 (2 t , $J=161 \mathrm{~Hz}$); $54.5(\mathrm{q}, J=148 \mathrm{~Hz}, \mathrm{OMe}) ; 23.5(\mathrm{q}, J=130 \mathrm{~Hz})$. Anal. Found: C, 36.12; $\mathrm{H}, 5.97$; $\mathrm{P}, 6.62 . \mathrm{C}_{14} \mathrm{H}_{26} \mathrm{BF}_{4} \mathrm{O}_{3} \mathrm{PRu}$ calc.: $\mathrm{C}, 36.46 ; \mathrm{H}, 5.68 ; \mathrm{P}, 6.72 \%$.
(η^{4}-2,3-Dimethylbutadiene) (η^{5}-2,4-dimethylpentadienyl)(trimethylphosphite)ruthenium tetrafluoroborate (14). 2,3-Dimethylbutadiene (5.0 ml .44 mmol) was added to a solution of $4(0.33 \mathrm{~g}, 0.66 \mathrm{mmol})$ in acetone (30 ml) and the mixture was refluxed for 3 h . Work-up as for 5 gave colourless crystals of 14 ($0.25 \mathrm{~g}, 78 \%$). M.p. $193^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR: 5.83 (d, $\left.J(\mathrm{PH})=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3\right) ; 3.94(\mathrm{~d}, J(\mathrm{PH})=11.3$ $\mathrm{Hz}, 9 \mathrm{H}, \mathrm{OMe}$); 3.53 (d, ${ }^{2} J=3.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 E, \mathrm{H} 5 E$); $2.46\left(\mathrm{~d},{ }^{2} J=2.2 \mathrm{~Hz}, \mathrm{H}^{\prime}{ }^{\prime} E\right.$, $\left.\mathrm{H} 4^{\prime} E\right) ; 2.05(\mathrm{~d}, J(\mathrm{PH})=0.8 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{Me}) ; 1.91\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{Me}^{\prime}\right) ; 0.84(\mathrm{dd}, J(\mathrm{PH})=8.5$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H} 1 \mathrm{Z}, \mathrm{H} 5 \mathrm{Z}$); 0.66 (dd, $\left.J(\mathrm{PH})=18.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1^{\prime} Z, \mathrm{H} 4^{\prime} Z\right) .{ }^{13} \mathrm{C}$ NMR: $110.8,102.8(2 \mathrm{~s}) ; 102.4(\mathrm{~d}, J=162 \mathrm{~Hz}) ; 56.1,47.6(2 \mathrm{t}, J=160 \mathrm{~Hz}) ; 54.9(\mathrm{q}, J=150$ $\mathrm{Hz}, \mathrm{OMe}$); 22.6, 20.0 (2q, $J=128 \mathrm{~Hz}$). Anal. Found: C, 39.89; H, 6.44; P, 6.24. $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{BF}_{4} \mathrm{O}_{3} \mathrm{PRu}$ calc.: $\mathrm{C}, 39.28 ; \mathrm{H}, 6.18 ; \mathrm{P}, 6.33 \%$.
(η^{4}-Cyclohexa-1,3-diene) (η^{5}-2,4-dimethylpentadienyl)(trimethylphosphite)ruthenium tetrafluoroborate (15). This was made as described for 14, but from cyclohexa-1,3-diene ($0.80 \mathrm{ml}, 8.4 \mathrm{mmol}$) and $4(0.21 \mathrm{~g}, 0.42 \mathrm{mmol})$. Reaction in refluxing acetone (30 ml) for 3 h gave pale yellow crystals of $15(0.14 \mathrm{~g}, 67 \%)$. Alternatively, cyclohexa-1,4-diene ($0.06 \mathrm{ml}, 0.64 \mathrm{mmol}$) and $4(0.16 \mathrm{~g}, 0.32 \mathrm{mmol})$ in refluxing acetone (30 ml) for 6 h gave $15\left(0.080 \mathrm{~g}, 53 \%\right.$). M.p. $151^{\circ} \mathrm{C}\left(\mathrm{dec}\right.$.). ${ }^{1} \mathrm{H}$ NMR: $6.33(\mathrm{~d}, J(\mathrm{PH})=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3) ; 5.30\left(\mathrm{dd},{ }^{3} J=5.0,{ }^{4} J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{\prime}\right.$, $\mathrm{H} 3^{\prime}$); $3.96(\mathrm{~d}, \mathrm{~J}(\mathrm{PH})=11.4 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{OMe}) ; 3.65\left(\mathrm{~d},{ }^{2} \mathrm{~J}=2.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 E, \mathrm{H} 5 E\right)$; 3.48 (m, 2H, H1', H4'); 2.02 (s, $6 \mathrm{H}, 2 \mathrm{Me}$); 1.67 (dd, ${ }^{2} J=11.3,{ }^{3} J=2.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}^{\prime} \mathrm{s}, \mathrm{H} 6^{\prime} \mathrm{s}\right) ; 1.35\left(\mathrm{dd}, J(\mathrm{PH})=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5^{\prime} \mathrm{a}, \mathrm{H} 6^{\prime} \mathrm{a}\right) ; 0.60(\mathrm{dd}, J(\mathrm{PH})=6.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H} 1 Z, \mathrm{H} 5 Z$). ${ }^{13} \mathrm{C}$ NMR: 109.5 (s); 100.6 (dd, $J=163, J(\mathrm{PC})=7 \mathrm{~Hz}$); 89.1 (d, $J=173 \mathrm{~Hz}) ; 66.2(\mathrm{~d}, J=160 \mathrm{~Hz}) ; 58.6(\mathrm{td}, J=152, J(\mathrm{PC})=7 \mathrm{~Hz}) ; 54.0(\mathrm{q}, J=155$ $\mathrm{Hz}, \mathrm{OMe}) ; 24.3(\mathrm{q}, J=131 \mathrm{~Hz}) ; 22.5(\mathrm{td}, J=134, J(\mathrm{PC})=11 \mathrm{~Hz})$. Anal. Found: C, 39.66; $\mathrm{H}, 5.63 ; \mathrm{P}, 6.29 . \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{BF}_{4} \mathrm{O}_{3} \mathrm{PRu}$ calc.: $\mathrm{C}, 39.44 ; \mathrm{H}, 5.79 ; \mathrm{P}, 6.36 \%$.
($\eta^{2}: \eta^{2}$-Cycloocta-1,5-diene) (η^{5}-2,4-dimethylpentadienyl) (trimethylphosphite) ruthenium tetrafluoroborate (16). This was made as described for 14, but from cycloocta-1,5-diene ($1.3 \mathrm{ml}, 11 \mathrm{mmol}$) and $4(0.26 \mathrm{~g}, 0.52 \mathrm{mmol})$. Reaction in refluxing acetone (40 ml) for 6 h gave pale yellow crystals of $16(0.20 \mathrm{~g}, 76 \%)$. M.p. $174^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR: $6.51(\mathrm{~d}, J(\mathrm{PH})=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3) ; 4.01(\mathrm{~d}, J(\mathrm{PH})=10.7$ $\mathrm{Hz}, 9 \mathrm{H}, \mathrm{OMe}$); $3.63,3.58\left(2 \mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{CH}^{\prime}\right) ; 2.47\left(\mathrm{~d},{ }^{2} J=3.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 E, \mathrm{H} 5 E\right.$); 2.40, 2.29 ($2 \mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}^{\prime}$); 2.04 (s, $6 \mathrm{H}, 2 \mathrm{Me}$); 2.09-1.97 (m, $4 \mathrm{H}, \mathrm{CH}_{2}^{\prime}$); 0.54 (dd, $J(\mathrm{PH})=4.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1 Z, \mathrm{H} 5 \mathrm{Z}) .{ }^{13} \mathrm{C}$ NMR: $119.6(\mathrm{~s}) ; 95.2(\mathrm{dd}, J=168, J(\mathrm{PC})=12$ Hz); $92.9(\mathrm{~d}, J=159 \mathrm{~Hz}$); 83.7 (d, $J=161 \mathrm{~Hz}$); 55.6 (qd, $J=158, J(\mathrm{PC})=10 \mathrm{~Hz}$, OMe); 53.8 (t, $J=159 \mathrm{~Hz}$); 31.6, 30.3 ($2 \mathrm{t}, J=127 \mathrm{~Hz}$); 24.8 (q, $J=128 \mathrm{~Hz}$). Anal. Found: C, 42.40; H, 6.40; P, 5.88. $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{BF}_{4} \mathrm{O}_{3} \mathrm{PRu}$ calc.: C, 42.12; H, 6.26; P, 6.01%.
(t-Butylisocyanide) $\left(\eta^{5}\right.$-cyclopentadienyl) η^{4}-2,4-dimethylpenta-1,3-diene) ruthenium tetrafluoroborate (17). This was made as described for 6 , from freshly distilled cyclopentadiene ($0.080 \mathrm{ml}, 0.87 \mathrm{mmol}$) and $2(0.27 \mathrm{~g}, 0.58 \mathrm{mmol})$. Reaction in refluxing acetone (30 ml) for 5 h , gave pale yellow crystals of $17(0.19 \mathrm{~g}, 75 \%$). M.p. $218^{\circ} \mathrm{C}$ (dec.). IR: $2162 \mathrm{~cm}^{-1}$ (CN). ${ }^{1} \mathrm{H}$ NMR: 5.68 (s, 1H, H3'); 5.26 (s, $5 \mathrm{H}, \mathrm{Cp}$); $3.36\left(\mathrm{~d},{ }^{2} \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} \mathrm{E}\right) ; 2.27,1.81\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{Me}^{\prime}\right) ; 1.60\left(\mathrm{~s}, 10 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right.$ and H1'Z); 1.02 (s, 3H, Me'). ${ }^{13}$ C NMR: 147.8 (s, RuCN); 103.1 (s); 87.7 (d, J= 182 Hz, Cp); 86.4 (d, $J=165 \mathrm{~Hz}$); 83.3 (s); 60.1 (s, $\mathrm{RuCN} C$); 45.9 (t, $J=162 \mathrm{~Hz}$); 34.2 ($\mathrm{q}, J=127 \mathrm{~Hz}$); $31.2\left(\mathrm{q}, J=129 \mathrm{~Hz},{ }^{\mathrm{t}} \mathrm{Bu}\right) ; 26.9(\mathrm{q}, J=125 \mathrm{~Hz}) ; 22.8(\mathrm{q}, J=128$ Hz). Anal. Found: C, $47.23 ; \mathrm{H}, 6.09$; N, 3.24. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{BF}_{4} \mathrm{NRu}$ calc.: C, 47.24; H, 6.06; N, 3.24\%.
(t-Butylisocyanide) $\left(\eta^{4}\right.$-2,4-dimethylpenta-1,3-diene) $)\left(\eta^{5}\right.$-pentamethylcyclopentadienyl)ruthenium tetrafluoroborate (18). This was made as described for 6, from 1,2,3,4,5-pentamethylcyclopentadiene ($0.13 \mathrm{ml}, 0.78 \mathrm{mmol}$) and $2(0.24 \mathrm{~g}, 0.52$ mmol). Reaction in refluxing acetone (30 ml) for 4 h , gave pale yellow crystals of 18 ($0.21 \mathrm{~g}, 80 \%$). M.p. $154^{\circ} \mathrm{C}$ (dec.). IR: $2151 \mathrm{~cm}^{-1}$ (CN). ${ }^{1} \mathrm{H}$ NMR: 4.69 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 3^{\prime}$); 2.54 (d, ${ }^{2} \mathrm{~J}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} E$); 2.05 (s, $3 \mathrm{H}, \mathrm{Me}^{\prime}$); 1.77 (s, $15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}$); 1.59 (s, $9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$); $1.55\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Me}^{\prime}\right.$ and $\mathrm{Hl}^{\prime} \mathrm{Z}$); 0.96 (s, $3 \mathrm{H}, \mathrm{Me}^{\prime}$). ${ }^{13} \mathrm{C}$ NMR: 155.0 (s, RuCN); 102.5 (s); 98.5 (s, $\mathrm{C}_{5} \mathrm{Me}_{5}$); 89.4 (d, $J=159 \mathrm{~Hz}$); 80.9 (s); 59.5 (s, RuCNC); $45.1(\mathrm{t}, J=161 \mathrm{~Hz}) ; 31.3\left(\mathrm{q}, J=129 \mathrm{~Hz},{ }^{\mathrm{t}} \mathrm{Bu}\right) ; 30.9,23.3,23.0(3 \mathrm{q}, J=128 \mathrm{~Hz}$); 10.2 ($\mathrm{q}, \mathrm{J}=128 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{Me}_{5}$). Anal. Found: C, 52.86; H, 7.24; N, 2.69. $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{BF}_{4} \mathrm{NRu}$ calc.: C, $52.60 ; \mathrm{H}, 7.22 ; \mathrm{N}, 2.79 \%$.
(t-Butylisocyanide) η^{5}-cyclohexadienyl) (η^{4}-2,4-dimethylpenta-1,3-diene)ruthenium tetrafluoroborate (19). This was made as described for 6, from cyclohexa-1,4-diene ($0.05 \mathrm{ml}, 0.53 \mathrm{mmol}$) and $2(0.17 \mathrm{~g}, 0.37 \mathrm{mmol})$. Reaction in refluxing acetone (40 ml) for 8 h gave yellow crystals of $19(0.14 \mathrm{~g}, 85 \%)$. M.p. $142^{\circ} \mathrm{C}$ (dec.). IR: 2163 $\mathrm{cm}^{-1}(\mathrm{CN}) .{ }^{1} \mathrm{H}$ NMR: $6.04\left(\mathrm{~m},{ }^{3} \mathrm{~J}=5.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3\right) ; 5.36\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3^{\prime}\right) ; 5.36(\mathrm{~m}$, ${ }^{3} J=6.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$ or H 4); $4.66\left(\mathrm{~m},{ }^{3} J=7.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4\right.$ or H 2); 4.06 (m, ${ }^{3} J=6.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1$ or H 5); 3.75 ($\mathrm{m},{ }^{3} \mathrm{~J}=7.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ or H 1); 2.73 (m, $\left.{ }^{2} J=14.2,{ }^{3} J=5.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{~s}\right) ; 2.54\left(\mathrm{~d},{ }^{2} J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1^{\prime} E\right) ; 2.38$ (d, $\left.{ }^{2} J=14.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{a}\right) ; 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}^{\prime}\right) ; 1.76\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right) ; 1.68\left(\mathrm{~d} .1 \mathrm{H}, \mathrm{H} 1^{\prime} \mathrm{Z}\right)$; 1.34, 1.13 ($2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{Me}^{\prime}$). ${ }^{13} \mathrm{C}$ NMR: 152.9 (s, RuCN); 103.3 (s); 99.3, 96.4 (2d, $J=171 \mathrm{~Hz}$); 92.6 (d, $J=175 \mathrm{~Hz}$); 89.3 (d, $J=164 \mathrm{~Hz}$); 81.1 (s); 59.7 (s, RuCNC); 55.8 (d, $J=167 \mathrm{~Hz}$); 54.9 (d, $J=170 \mathrm{~Hz}$); $45.8(\mathrm{t}, J=161 \mathrm{~Hz}$); $30.9(\mathrm{q}, J=127 \mathrm{~Hz}$, ${ }^{\mathrm{t}} \mathrm{Bu}$); 30.3 (q, $J=129 \mathrm{~Hz}$); 28.4 (t, $J=136 \mathrm{~Hz}$); 24.0, 22.2 ($2 \mathrm{q}, J=128 \mathrm{~Hz}$). Anal. Found: C, 48.51; H, 6.66; N, 3.30. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{BF}_{4} \mathrm{NRu}$ calc.: C, 48.44; H, 6.32; N, 3.14\%.

Carbonyl $\left(\eta^{5}\right.$-cyclohexadienyl) (η^{4}-2,4-dimethylpenta-1,3-diene)ruthenium tetrafluoroborate (20). This was made as described for 10, from cyclohexa-1,4-diene ($0.060 \mathrm{ml}, 0.64 \mathrm{mmol}$) and $3(0.14 \mathrm{~g}, 0.34 \mathrm{mmol})$. Reaction in acetone (20 ml) at room temperature for 60 h gave colourless crystals of $20(0.10 \mathrm{~g}, 78 \%)$. M.p. $133^{\circ} \mathrm{C}$ (dec.). IR: $2037 \mathrm{~cm}^{-1}(\mathrm{CO}) .{ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): $6.57\left(\mathrm{~m},{ }^{3} J=5.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H3); 5.81 (s, 1H, H3'); $5.70\left(\mathrm{~m},{ }^{3} \mathrm{~J}=6.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2\right.$ or H4); $5.26\left(\mathrm{~m},{ }^{3} \mathrm{~J}=6.8\right.$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4$ or H 2); $4.61\left(\mathrm{~m},{ }^{3} J=6.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right.$ or H 1); $4.47\left(\mathrm{~m},{ }^{3} J=6.8\right.$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1$ or H 5); $3.05\left(\mathrm{~m},{ }^{2} J=14.6,{ }^{3} J=5.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{~s}\right.$); 3.00 (d, ${ }^{2} J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 1^{\prime} E$); 2.51 (d, ${ }^{2} J=14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{a}$); 2.32 (s, $4 \mathrm{H}, \mathrm{Me}^{\prime}$ and $\mathrm{H} 1^{\prime} Z$); $1.57,1.44$ ($2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{Me}^{\prime}$). ${ }^{13} \mathrm{C}$ NMR (acetone- d_{6}): 209.9 (s, CO); 107.5 (s); 102.0, 99.4 (2d, $J=173 \mathrm{~Hz}$); 96.9 (d, $J=178 \mathrm{~Hz}$); 92.0 (s); 91.0 (d, $J=168 \mathrm{~Hz}$); 59.7 (d, $J=155 \mathrm{~Hz}$); 58.0 (d, $J=170 \mathrm{~Hz}$); 47.9 (t, $J=159 \mathrm{~Hz}$); 30.6 (q, $J=128$ Hz); $28.8(\mathrm{t}, J=140 \mathrm{~Hz}$); 24.3, $23.0(2 \mathrm{q}, J=128 \mathrm{~Hz}$). Anal. Found: C, 42.61; H, 4.91. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BF}_{4} \mathrm{ORu}$ calc.: C, 42.99 ; $\mathrm{H}, 4.90 \%$.
(t-Butylisocyanide) $\left(\eta^{5}\right.$-cycloocta-2,4-dien-1-yl) (η^{4}-2,4-dimethylpenta-1,3-diene) ruthenium tetrafluoroborate (21). This was made as described for 6, from cy-cloocta-1,3-diene ($0.80 \mathrm{ml}, 6.5 \mathrm{mmol}$) and $2(0.14 \mathrm{~g}, 0.30 \mathrm{mmol})$. Reaction in refluxing acetone (30 ml) for 10 h gave paie yellow crystals of $21(0.10 \mathrm{~g}, 68 \%$). M.p. $168^{\circ} \mathrm{C}$ (dec.). IR: $2165 \mathrm{~cm}^{-1}(\mathrm{CN}) .{ }^{1} \mathrm{H}$ NMR: 6.33 (dd, ${ }^{3} \mathrm{~J}=7.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}$, H3); 5.20 (s, 1H, H3'); 4.88 (dd, ${ }^{3} \mathrm{~J}=9.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$); 4.35 (m, 1H, H5); 4.04 (dd, ${ }^{3} J=9.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4$); $3.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 1) ; 2.39\left(\mathrm{~d},{ }^{2} J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} \mathrm{E}^{\prime}\right.$) 2.31 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 6 E, \mathrm{H} 8 E$); 2.06 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{Me}^{\prime}$ and $\mathrm{H}^{\prime} \mathrm{Z}$); 1.87 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 6 \mathrm{Z}, \mathrm{H} 8 Z$); 1.74 (s, $9 \mathrm{H},{ }^{\text {t }} \mathrm{Bu}$); 1.32 (s, 3H, Me'); 1.26 (m, 1H, H7a); 1.16 (s, 3H, Me'); 0.21 (qt, ${ }^{2} J=14.6,{ }^{3} J=14.0,14.0,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7 \mathrm{~s}$). ${ }^{13} \mathrm{C}$ NMR: 153.7 (s, RuCN); 111.1 (d, $J=166 \mathrm{~Hz}$); 107.7 (s); $93.2,91.8,90.4$ (3d, $J=166 \mathrm{~Hz}$); 84.4 (s); 68.1, 64.7 (2 d , $J=154 \mathrm{~Hz}$); 59.2 (s, RuCNC); 50.7 (t, $J=159 \mathrm{~Hz}$); 31.2 (q, $J=128 \mathrm{~Hz},{ }^{\mathrm{t}} \mathrm{Bu}$); 31.0, 28.2 ($2 \mathrm{q}, J=128 \mathrm{~Hz}$); 28.8 (t, $J=123 \mathrm{~Hz}$); 28.3 (t, $J=127 \mathrm{~Hz}$); 22.4 (q, $J=128$ Hz ; 18.6 (t, $J=130 \mathrm{~Hz}$). Anal. Found: C, $50.45 ; \mathrm{H}, 6.68 ; \mathrm{N}, 3.05 . \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{BF}_{4} \mathrm{NRu}$ calc.: C, $50.64 ; \mathrm{H}, 6.80 ; \mathrm{N}, 2.95 \%$.

Carbonyl $\left(\eta^{5}\right.$-cycloocta-2,4-dien-1-yl) $\left(\eta^{4}\right.$-2,4-dimethylpenta-1,3-diene)ruthenium tetrafluoroborate (22). A solution of cycloocta-1,3-diene ($0.070 \mathrm{ml}, 0.56 \mathrm{mmol}$) and $3(0.18 \mathrm{~g}, 0.44 \mathrm{mmol})$ in acetone (30 ml) was stirred at room temperature for 4 d. Solvent evaporation and recrystallisation of the residue from $\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}$ gave
yellow crystals of $22\left(0.13 \mathrm{~g}, 70 \%\right.$). M.p. $143^{\circ} \mathrm{C}$ (dec.). IR: $2035 \mathrm{~cm}^{-1}(\mathrm{CO}) .{ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): 6.77 (dd, ${ }^{3} J=7.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$); 5.57 (s, 1H, H3'); 5.20 (dd, $\left.{ }^{3} J=9.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2\right) ; 4.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 5) ; 4.62$ (dd, $\left.{ }^{3} \mathrm{~J}=9.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4\right) ; 4.26$ (m, 1H, H1); 2.97 (d, ${ }^{2} J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} E$); 2.70 (d, $1 \mathrm{H}, \mathrm{H} 1^{\prime} Z$); 2.42 (m, 2 H , H6E, H8E); 2.23 (s, 3H, Me'); 2.12 (m, 2H, H6Z, H8Z); 1.56 (s, 3H, Me'); 1.47 (s, $3 \mathrm{H}, \mathrm{Me}^{\prime}$); 1.39 (m, 1H, H7a); 0.33 (qt, ${ }^{2} J=14.0,{ }^{3} J=14.0,14.0,2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}$, H7s). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$): 207.7 (s, CO); 112.3 (d, $J=166 \mathrm{~Hz}$); 110.3, 96.3 (2s); 93.3 (d, $J=168 \mathrm{~Hz}$); 93.2 (d, $J=160 \mathrm{~Hz}$); 91.5 (d, $J=172 \mathrm{~Hz}$); 71.7, 67.7 (2d, $J=154 \mathrm{~Hz}$); 50.8 ($\mathrm{t}, J=164 \mathrm{~Hz}$); $28.2(\mathrm{q}, J=128 \mathrm{~Hz}) ; 28.1(\mathrm{t}, J=135 \mathrm{~Hz}) ; 27.8(\mathrm{t}$, $J=128 \mathrm{~Hz}$); $22.722 .1(2 \mathrm{q}, J=128 \mathrm{~Hz}$); $17.8(\mathrm{t}, J=129 \mathrm{~Hz})$. Anal. Found: C, 45.67; $\mathrm{H}, 5.61 . \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BF}_{4} \mathrm{ORu}$ calc.: $\mathrm{C}, 45.84 ; \mathrm{H}, 5.53 \%$.
(η^{5}-Cycloocta-2,4-dien-1-yl) $\left(\eta^{4}-2,4-d i m e t h y l p e n t a-1,3-d i e n e\right)($ trimethylphosphite) ruthenium tetrafluoroborate (23). This was made as described for 14, from cy-cloocta-1,3-diene ($0.070 \mathrm{ml}, 0.56 \mathrm{mmol}$) and $4(0.15 \mathrm{~g}, 0.30 \mathrm{mmol})$. Reaction in refluxing acetone (30 ml) for 7 h gave colourless crystals of $23(0.11 \mathrm{~g}, 74 \%$). M.p. $116^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR: $6.28\left(\mathrm{~m},{ }^{3} J=6.9,6.9, J(\mathrm{PH})=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3\right) ; 5.06(\mathrm{~s}, 1 \mathrm{H}$, H3'); 4.81 (dd, ${ }^{3} J=9.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$); 4.24 (m, 1H, H5); 4.03 (d, $J(\mathrm{PH})=10.9$ $\mathrm{Hz}, 9 \mathrm{H}, \mathrm{OMe}$); 3.85 (dd, ${ }^{3} \mathrm{~J}=9.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4$); 3.75 (m, $1 \mathrm{H}, \mathrm{H} 1$); 2.51 (d, $\left.{ }^{2} J=2.5 \mathrm{~Hz}, \mathrm{H} 1^{\prime} E\right) ; 2.06$ (s, 3H, Me'); 2.02 (m, 2H, H6E, H8E); 1.87 (d, 1H, $\mathrm{H}^{\prime} \mathrm{Z}$); 1.85 (m, 2H, H6Z, H8Z); 1.21 (s, 3H, Me'); 1.18 (m, 1H, H7a); 0.92 (d, $\left.J(\mathrm{PH})=2.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}^{\prime}\right) ; 0.19\left(\mathrm{qt},{ }^{2} J=14.5,{ }^{3} J=14.0,14.0,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7 \mathrm{~s}\right)$. ${ }^{13} \mathrm{C}$ NMR: 110.9 (dd, $J=175, J(\mathrm{PC})=12 \mathrm{~Hz}$; 108.0 (s); $91.490 .7,89.5$ (3d, $J=165 \mathrm{~Hz}$); $84.1(\mathrm{~s}) ; 68.8(\mathrm{dd}, J=152, J(\mathrm{PC})=5 \mathrm{~Hz}) ; 63.7(\mathrm{~d}, J=146 \mathrm{~Hz}) ; 55.0$ (q, $J=137 \mathrm{~Hz}, \mathrm{OMe}) ; 51.0(\mathrm{td}, J=154, J(\mathrm{PC})=5 \mathrm{~Hz}) ; 27.5(\mathrm{q}, J=133 \mathrm{~Hz}) ; 26.7$ (t, $J=133 \mathrm{~Hz}$); $25.8(\mathrm{t}, J=130 \mathrm{~Hz}) ; 22.4,21.4(2 \mathrm{q}, J=127 \mathrm{~Hz}) ; 18.4(\mathrm{t}, J=128$ Hz). Anal. Found: $\mathrm{C}, 41.98 ; \mathrm{H}, 6.15 ; \mathrm{P}, 6.18 . \mathrm{C}_{18} \mathrm{H}_{32} \mathrm{BF}_{4} \mathrm{O}_{3} \mathrm{PRu}$ calc.: C, 41.96, H, 6.26; P, 6.01\%.
(t-Butylisocyanide) η^{4}-cyclohexa-1,3-diene) $\left(\eta^{5}\right.$-cyclohexadienyl)ruthenium tetrafluoroborate (24). This was made as described for 6, from cyclohexa-1,4-diene $(0.73 \mathrm{ml}, 7.8 \mathrm{mmol})$ and $2(0.18 \mathrm{~g}, 0.39 \mathrm{mmol})$. Reaction in refluxing acetone (40 $\mathrm{ml})$ for 12 h gave pale yellow crystals of $24(0.12 \mathrm{~g}, 72 \%)$. Alternatively, cyclohexa-1,3-diene ($0.30 \mathrm{ml}, 3.2 \mathrm{mmol}$) and $19(0.070 \mathrm{~g}, 0.16 \mathrm{mmol})$ in refluxing acetone (30 ml) for 6 h , gave $24(0.050 \mathrm{~g}, 74 \%)$. M.p. $176^{\circ} \mathrm{C}$ (dec.). IR: $2170 \mathrm{~cm}^{-1}(\mathrm{CN}) .{ }^{1} \mathrm{H}$ NMR: 6.34 (t, ${ }^{3} \mathrm{~J}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$); 5.43 ($\mathrm{dd},{ }^{3} \mathrm{~J}=5.3,{ }^{4} \mathrm{~J}=2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} \mathbf{2}^{\prime}, \mathrm{H}^{\prime}$); 5.24 (dd, ${ }^{3} J=7.0,5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2, \mathrm{H} 4$); 4.19 (dd, ${ }^{3} J=7.0,5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 1, \mathrm{H} 5$); 3.74 (m, 2H, H1', H4'); 2.81 ($\mathrm{dt}^{2}{ }^{2} J=14.2,{ }^{3} J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6 \mathrm{~s}$); 2.60 (d, 1H, H6a); 1.80 (s, 9H, 'Bu); 1.78 (m, ${ }^{2} J=11.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5{ }^{\prime} \mathrm{a}, \mathrm{H}^{\prime} \mathrm{a}$); 1.50 (m, 2H, H5's, H6's). ${ }^{13} \mathrm{C}$ NMR: 151.4 (s, RuCN); 94.6, 88.5, 81.1 (3d, $J=174 \mathrm{~Hz}$); 66.5 (d, $J=162 \mathrm{~Hz}$); 59.8 (d, $J=168 \mathrm{~Hz}$); 59.7 (s, RuCNC); 30.6 (q, $J=127 \mathrm{~Hz},{ }^{\dagger} \mathrm{Bu}$); 28.7 (t, $J=135 \mathrm{~Hz}$); 22.9 (t, $J=130 \mathrm{~Hz}$). Anal. Found: C, 47.78; H, 5.60; N, 3.15. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{BF}_{4} \mathrm{NRu}$ calc.: C, 47.46; H, 5.62; N, 3.25\%.

Carbonyl $\left(\eta^{4}\right.$-cyclohexa-1,3-diene) $\left(\eta^{5}\right.$-cyclohexadienyl)ruthenium tetrafluoroborate (25). A solution of cyclohexa-1,3-diene ($1.2 \mathrm{ml}, 12.6 \mathrm{mmol}$) and $20(0.060 \mathrm{~g}, 0.15$ mmol) in acetone (10 ml) was stirred at room temperature for 6 h . Solvent evaporation and recrystallisation of the residue from $\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}$ gave pale orange crystals of $25(0.050 \mathrm{~g}, 87 \%)$. A similar procedure but with cyclohexa-1,4-diene and reaction for 12 h at room temperature also gave $\mathbf{2 5}$ (73\%). Characterisation details for $\mathbf{2 5}$ are in accord with those we have reported previously [13b].
(t-Butylisocyanide) $\left(\eta^{2}: \eta^{2}\right.$-cycloocta-1,5-diene) $\left(\eta^{5}\right.$-cycloocta-2,4-dien-1-yl)ruthenium tetrafluoroborate (26). A solution of cycloocta-1,5-diene ($0.70 \mathrm{ml}, 5.7 \mathrm{mmol}$) and $21(0.26 \mathrm{~g}, 0.55 \mathrm{mmol})$ was refluxed in acetone (40 ml) for 7 h . Work-up as for 5 gave pale yellow crystals of $26(0.20 \mathrm{~g}, 75 \%)$. M.p. $174^{\circ} \mathrm{C}$ (dec.). IR: $2161 \mathrm{~cm}^{-1}$ (CN). ${ }^{1} \mathrm{H}$ NMR: $7.20\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3\right) ; 4.83\left(\mathrm{dd},{ }^{3} \mathrm{~J}=9.0,7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2\right.$, H4); 4.21 (m, 2H, 2CH'); 3.61 (m, 2H, 2CH'), 3.23 (m, 2H, H1, H5); 2.53, 2.44 (2 m , $4 \mathrm{H}, \mathrm{CH}_{2}^{\prime}$); 2.17, 2.11 ($2 \mathrm{~d},{ }^{2} \mathrm{~J}=9.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}^{\prime}$); 2.14 (m, 2H, H6E, H8E); 1.77 (s, $9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$); 1.61 (m, 2H, H6Z, H8Z); $1.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 7 \mathrm{a}) ; 0.21$ (qt, ${ }^{2} J=14.1$, ${ }^{3} J=14.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 7 \mathrm{~s}$). ${ }^{13} \mathrm{C}$ NMR: 155.1 (s, RuCN); 105.2 (d, $J=168 \mathrm{~Hz}$); 98.7 (d, $J=164 \mathrm{~Hz}$); 96.2, 87.8 (2d, $J=159 \mathrm{~Hz}$); 64.5 (d, $J=149 \mathrm{~Hz}$); 59.9 (s, RuCNC); $33.0(\mathrm{t}, J=127 \mathrm{~Hz}$); $31.4(\mathrm{q}, J=129 \mathrm{~Hz}$); $30.1,27.7$ ($2 \mathrm{t}, J=130 \mathrm{~Hz}$); 19.1 (t, $J=127 \mathrm{~Hz}$). Anal. Found: C, 52.03; H, 6.71; N, 3.08. $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{BF}_{4} \mathrm{NRu}$ calc.: C, 51.86; H, 6.63; N, 2.88\%.

Acknowledgements

We thank the Swiss National Science Foundation for financial support and Johnson Matthey ple for a loan of $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$.

References

1 For example: (a) J.R. Bleeke and A.J. Donaldson, Organometallics, 5 (1986) 2401; (b) G.H. Lee, S.M. Peng, S.F. Lush, M.Y. Liao and R.S. Liu, Organometallics, 6 (1987) 2094; (c) J.R. Bleeke and A.J. Donaldson, Organometallics, 7 (1988) 1588; (d) J.R. Bleeke, M.K. Hays and R.J. Wittenbrink, Organometallics, 7 (1988) 1417; (e) J.R. Hinchliffe and M.W. Whiteley, J. Organomet. Chem., 402 (1991) C50.

2 (a) R.D. Ernst, Acc. Chem. Res., 18 (1985) 56; (b) R.D. Ernst, Chem. Rev., 88 (1988) 1255.
3 D.N. Cox and R. Roulet, J. Chem. Soc., Chem. Commun., (1988) 951.
4 R. Gleiter, I. Hyla-Kryspin, M.L. Ziegler, G. Sergeson, J.C. Green, L. Stahl and R.D. Ernst, Organometallics, 8 (1989) 298.
5 D.N. Cox and R. Roulet, J. Chem. Soc., Chem. Commun., (1989) 175.
6 G. Michael, J. Kaub and C.G. Kreiter, Angew. Chem., Int. Ed. Engl., 24 (1985) 502.
7 J.R. Bleeke, J.J. Kotyk, D.A. Moore and D.J. Rauscher, J. Am. Chem. Soc., 109 (1987) 417.
8 T. Lumini, D.N. Cox, R. Roulet, G. Chapuis and F. Nicolo, Helv. Chim. Acta, 73 (1990) 1931.
9 T.D. Newbound, L. Stahl, M.L. Ziegler and R.D. Ernst, Organometallics, 9 (1990) 2962.
10 T. Lumini, D.N. Cox, R. Roulet and K. Schenk, J. Organomet. Chem., 434 (1992) 363.
11 D.N. Cox, R.W.H. Small and R. Roulet, J. Chem. Soc., Dalton Trans., (1991) 2013.
12 (a) B.F.G. Johnson, J. Lewis, T.W. Matheson, I.E. Ryder and M.V. Twigg, J. Chem. Soc., Chem. Commun., (1974) 269; (b) J. Ashley-Smith, D.V. Howe, B.F.G. Johnson, J. Lewis and I.E. Ryder, J. Organomet. Chem., 82 (1974) 257; (c) E.K.G. Schmidt and C.H. Theil, J. Organomet. Chem., 220 (1981) 87; (d) M.J. Hynes, M.F.T. Mahon and P. McArdle, J. Organomet. Chem., 320 (1987) C44.

13 (a) M. Crocker, M. Green, C.E. Morton, K.R. Nagle and A.G. Orpen, J. Chem. Soc., Dalton Trans., (1985) 2145; (b) D.N. Cox and R. Roulet, Organometallics, 5 (1986) 1886.

14 M.O. Albers, D.J. Robinson, A. Shaver and E. Singleton, Organometallics, 5 (1986) 2199.
15 P.J. Fagan, W.S. Mahoney, J.C. Calabrese and I.D. Williams, Organometallics, 9 (1990) 1843.
16 A.J. Domingos, B.F.G. Johnson and J. Lewis, J. Chem. Soc., Dalton Trans., (1975) 2288.
17 D. Bingham, B. Hudson, D.E. Webster and P.B. Wells, J. Chem. Soc., Dalton Trans., (1974) 1521.
18 T.V. Ashworth, A.A. Chalmers, D.C. Liles, E. Meintjies and E. Singleton, Organometallics, 6 (1987) 1543.

[^0]: Correspondence to: Dr. D.N. Cox or Prof. R. Roulet.

